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Abstract: Recent advances in time series analysis related to unit root and cointegration make us nervous
about spurious regressions. Spurious regression refers to the case where some statistically significant
coefficients are often obtained in regression analysis when the dependent and independent variables are
mutually independent random walks. High R-squared and significant t-values might mislead us to nonsense
regressions. In this paper, I focus on the Durbin-Watson (DW) ratio and investigate whether it is helpful in
detecting spurious regressions in empirical analyses or not. This statistic has a useful property to discriminate
cointegrating relationships and spurious regression. In the case of a spurious regression, the DW ratio
converges to zero, so it can be utilized for testing the hypothesis of a cointegrating relationship. However,
there are several types of nonsense regressions. In some cases, the asymptotic distributions of the t-value,
DW ratio or other statistics have been studied, but how the statistics might be utilized in testing or detecting a
nonsense regression has not been investigated. In order to investigate if a traditional diagnostic testing
process using t-values and the DW ratio works, I conduct a Monte Carlo simulation. The results show that
the traditional diagnostic testing process when we check t-values and the DW ratio in the first regression and
then proceed to cope with the serial correlation in disturbances works, and we can detect nonsense regressions
when the spurious effect arising from non-stochastic part is removed. If the spurious effect is not removed,
we have a statistically significant coefficient even in the second regression (Cochrane=Orcutt method). This
result suggests that we should pay attention to whether the sources of spurious effects can be removed in the
second regression or not. In other words, to apply a proper model to data is one of the most important step in

detecting a spurious regression.
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L INTRODUCTION

From an empirical researcher’s viewpoint, recent
advances in time series analysis related to unit root
and cointegration make us nervous about spurious
regression [Granger and Newbold, 1974]. In the
case of a spurious regression, some statistically
significant coefficients are obtained and the R-
square is very high. This high R-square and
significant t-values might mislead us to nonsense
regressions. Only the Durbin-Watson (DW) ratio
is a clue to detect a nonsense regression because its
value is low. In this paper, I focus on this DW
ratio and investigate whether it is helpful in
detecting drop spurious regressions in empirical
analyses or not.

The DW ratio is a one of the most popular
statistics for testing for serial correlations in
regression disturbances. This statistic also has a
useful property to discriminate cointegrating

relationships and spurious regressions. In the case
of spurious regression, the DW ratio converges to
zero [Phillips, 1986]. Engle and Granger [1987]
proposed to utilize this property for testing the
hypothesis ~ of  cointegrating relationship.
Additionally, some other researchers investigate
the properties of the DW ratio in some similar
situations, for example, Bhargava [1986] and
Hisamatsu and Maekawa [1994].

Of course, there are several types of nonsense
regression apart from the case Granger and
Newbold [1974] considered. In some cases, the
asymptotic distributions of t-value, the DW ratio or
other statistic have been studied, but how to utilize
the statistics for testing or detecting a nonsense
regression has not been investigated. In this paper,
a traditional diagnostic testing process using t-
values and the DW ratio is investigated.
Conducting a Monte Carlo simulation for some
nonsense regression cases, 1 focus on whether the
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traditional diagnostic testing process can be used
as a rule of thumb or not.

2. SPURIOUS EFFECTS IN NONSENSE
REGRESSIONS

Granger and Newbold [1974] consider the
estimation of a simple regression:

Model 1: Y=cy+c, X+ ¢, (48]

where t=1,...,T, and Y, and X, are assumed to be
generated as two independent random walks:

Y=Y +u, and X=X +v,. 2)

They found that the calculated t-values for c, in (1),
t.;, are significant with relatively high frequencies,
and that the DW ratios are low. This regression is
called a “spurious regression.”

Phillips [1986] investigated the asymptotic
distribution of the DW and t, and obtained the
following results: '

DW = O(T"),

tcl = Op(T)

These results means that the calculated t-values
diverge, while the DW ratio converges to zero.

This type nonsense regression has been extended to
several more complicated cases; foe example, to
the case with cointegrated regressors in Choi
[1994], and panel data in Entorf [1997] and Kao
[1999].

In addition to data generation process in (1), there
are several types of data generation processes that
make estimation of a regression models nonsensial.
Consider the case where Y, and X, follow two
independent random variables without or with
trend:

Y=Bl+u, and X;=B2+v, 3)
Y=Bl1 t+u, and X=B2 t+v, 3)

where B1 and B2 are parameters, and t is a trend
variable. We can take a regression like (1) as a
nonsense  regression  because we  cannot
discriminate the theory-based (e.g. economic
theory) relationships from a just computational or
statistical relationship. Of course, if some shifts or
kinks occurred in the value of the parameters with
time leads or lags, we can define causality between
the two variables and a regression like (1) has
some meaning.

Moreover, we can consider more complicated
cases. Suppose Y, and X, follow two independent
random walks with drift:

Y=B1+Y,;+u, and X=B2+X, +v, (G)
For this case, we should take the following model:
Model 2 Y=cy+c X+c,t+e,  (5)

as a kind of nonsense regression. Entorf [1987]
investigated the properties of statistics for Model 1
with the data generating process (4). He obtained
the following results:

DW = O(T"),
tcl = Op(T)’

This is the same result as obtained by Phillips
[1986] for the Granger-Newbold model.

Some of the asymptotic results of these nonsense
regressions are intuitive and others are obtained
theoretically. However, their small sample
properties are obscure, and the properties of the
traditional diagnostic testing process have not been
investigated.

3. DW AND t-RATIO IN PRACTICE

Here, I focus on the roles of the DW ratio in
traditional diagnostic testing process. What we
call “traditional diagnostic testing process” is as
follows:

1*; Test the null hypothesis that the regression
coefficients are not significant using t-statistics.

2"%: Test the null hypothesis that there is no serial
correlation in the error terms using the DW ratio.

3™ When the null hypothesis in step 2 is rejected,
we proceed to cope with the serially correlated
error terms by applying Cochrane=Orcutt
procedure to the data. Then, we test the null
hypothesis that the coefficients are not significant
using t-statistics.

If this diagnostic testing process works to drop the
nonsense regression, we need not pay attention to
whether the time series has unit root or not
preliminary. We should just test the cointegrating
relationships with Johansen’s [1988] method.
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4. MONTE CARLO SIMULATION

First, we -need to define the data generating
processes (DGP). Because the results with DGP
(3) and (3°) are intuitive, we adopt (2) and (4) as
the DGP for simulation. Following Entorf [1992]
that is cited in Maddala and Kim [p.181, 1998], 1
fix the ratio B1/B2=2.0 except for DGP:X4-, and
in all the cases, the error variance of u, and v, are
fixed 1.0. Details of the DGPs (sample size, etc)
are shown in Table 1.

Table 1. Setups of the models.

Number of B1 B2
DGP observations
X0-50 50 0 0
X0-100 100 0 0
X0-150 150 0 0
X0-200 200 0 0
X1-50 50 0.1 0.05
X1-100 100 0.1 0.05
X1-150 150 0.1 0.05
X1-200 200 0.1 0.05
X2-50 50 0.5 0.25
X2-100 100 0.5 0.25
X2-150 150 0.5 0.25
X2-200 200 0.5 0.25
X3-50 50 1.5 0.75
X3-100 100 1.5 0.75
X3-150 150 1.5 0.75
X3-200 200 1.5 0.75
X4-50 50 0.5 0
X4-100 100 0.5 0
X4-150 150 0.5 0
X4-200 200 0.5 0

I set the number of replications at 5000. The
results of applying this diagnostic testing process
to Model 1 ( equation (1)) are shown in Table 2.
t1, t1 & DW, and t1, DW & and t2 columns show
the percentages of rejection rate in the first, second
and third steps, respectively.

The results can be summarized as follows: First,
the rejection rates in the first and second steps are
almost the same and more than 60%. Second,
except in the X2- and X3- cases, the rejection rates
in the third step are around 5%. This is close to the
target-size of the testing in the third step. In the
X2- and X3- cases, the rejection rates are high.
Especially, in the X3- cases, because of their high
rejection rates in the third steps, we can conclude
that this diagnostic testing process cannot detect
spurious regressions when we estimate the Model 1
with DGP (4), random walk with drift. The reason
why this process produces misleading results
depends on the spurious effect from the
nonstochastic part (drift) in (4). Consider the case
of applying the diagnostic testing process for (3) or
(3°). Because of the nonstochastic part, estimated
coefficients become statistically significant. To
avoid this type misleading, we should add a
nonstochastic trend in the estimated model.

Table 2. Simulation results: Model 1.

There are several variations of which significance
levels and which statistics d; or dy for the DW we
should utilize. In this paper, I adopt the following
steps:

1% 1 reject the null hypothesis that the coefficient
¢, in (1) or (5) equal zero if its corresponding t-
statistic is larger than 1.96 in absolute value, which
is the 5% critical value from standard nmormal
distribution and then proceed to the second step.

2". 1 reject the null hypothesis that there is no
serial correlation in the error term when the
calculated the DW is less than d;, then proceed to
the third step: the Cochrane=Orcutt procedure.

3% If the result from the Cochrane=Orcutt
procedure show that the t-value of the coefficient
¢, in (1) or (5) is larger than 1.96 in absolute value,
I reject the null hypothesis that the coefficient is
zero. Then, I conclude that this regression is not a
nonsense regression.

1 tl & DW tl, DW

DGP & 12
X0-50 66.0 66.0 8.6
X0-100 75.6 75.6 54
X0-150 81.8 81.8 4.9
X0-200 83.3 83.3 5.0
X1-50 67.8 67.8 6.9
X1-100 81.0 81.0 6.4
X1-150 86.5 86.5 5.0
X1-200 88.1 88.1 5.7
X2-50 94.3 94.3 79
X2-100 99.1 99.1 7.6
X2-150 99.6 99.6 7.6
X2-200 99.7 99.7 8.7
X3-50 100.0 100.0 26.8
X3-100 100.0 100.0 52.4
X3-150 100.0 100.0 71.9
X3-200 100.0 100.0 74.9
X4-50 80.9 80.9 43
X4-100 85.8 85.8 5.0
X4-150 90.6 90.6 4.0
X4-200 93.1 93.1 5.2

Therefore, I conduct a simulation of the properties
of Model 2 (equation (5)). Because a
nonstochastic trend is added, the sources of
spurious effects are removed: a stochastic trend is
detected by the DW ratio and the nonstochastic
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trend removed by trend term. The results of the
simulations are shown in Table 3.

The results can be summarized as follows: First,
the rejection rates in the first and second steps are
almost the same and more than 60%. These are
similar to the results in Table 2. Second, even in
the X2- and X3- cases, the rejection rates in the
third step are around 5%. This is close to the

target-size of the testing procedure in the third step.

This result means that the traditional diagnostic
testing process works and can detect the spurious
regressions at proper rates even when the random
walks have drifts. It is clear that adding trend term
removes the spurious effect from the nonstochastic
part, and .the size of the third step is close to 5%.

Table 3. Simulation results: Model 2.

t1 tl1 & DW t1, DW
DGP & t2
X0-50 51.7 51.5 7.1
X0-100 64.7 64.7 5.0
X0-150 70.5 70.5 3.8
X0-200 70.8 70.8 4.7
X1-50 52.8 52.8 4.7
- X1-100 75.6 75.6 5.0
X1-150 81.8 81.8 3.8
X1-200 83.3 83.3 4.7
X2-50 52.8 52.8 7.0
X2-100 64.7 64.7 5.0
X2-150 70.5 70.5 3.8
X2-200 70.8 70.8 4.7
X3-50 52.8 52.8 7.0
X3-100 64.7 64.7 5.0
X3-150 70.5 70.5 3.8
X3-200 70.8 70.8 4.7
X4-50 52.8 52.8 7.0
X4-100 64.7 64.7 54
X4-150 70.5 70.5 4.9
X4-200 70.8 70.8 5.0

Comparing the results from Table 2 and 3, one of
the most important implications that we can detect
a spurious regression when we deal with both
sources of spurious effects: the stochastic and
nonstochastic ones. In practice, we should add
trend term to remove the nonstochastic one and
check the DW ratio to detect the stochastic one.

S. CONCLUSION

I conduct a Monte Carlo simulation for some
nonsense regressions. The results show that the
traditional diagnostic checking process: t-values
and the DW ratio in the first regression and t-value
in the second regression, detect nonsense
regression when the spurious effect from the non-
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stochastic part is removed. If a spurious effect is
not removed, we have a statistically significant
coefficient in the second regression
(Cochrane=Orcutt method).

This result suggests that we should pay attention to
whether the sources of spurious effects can be
removed in the second regression or not. In other
words, to apply a proper model to data is one of
the most important to detect a spurious regression.

Maddala and Kim [1998] introduce Entorf [1992]
results as:

“Entorf investigates the small sample
distribution of the DW statistic. He finds
that for more than five regressions the 95
percent fractile of the DW distribution is
larger than two. Thus even regressions
with the DW values of about two do not
necessarily ensure that we do not estimate
spurious regressions.”

Because I do not obtain Entorf’s [1992] paper, I do
know the exact setup of his simulation experiments.
However, we should investigate the case with
multiple explanatory variables. Of course, Granger
and Newbold [1974] investigated such cases, and
their result shows that the DW ratio becomes large
in accordance with increase of explanatory
variables.
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